Простой всеволновый укв-чм радиоприемник. УКВ-приемник: Быть или не быть "кухонному" радио? Лучшие схемы однокристальных укв приемников

"Научно-технические статьи" - подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов , научные разработки в области радиотехники и электроники , статьи по истории развития радиотехники и электроники , новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники , обзоры выставок радиоэлектронной тематики.

В последнее десятилетие широко и повсеместно используются УКВ-приемники. Это связано с постоянно растущим числом радиостанций различных направлений, а также высоким качеством звучания приемников с ЧМ по сравнению с АМ и возможностью стереозвучания. Однако на постсоветском пространсве есть ряд проблем с качеством имеющихся в продаже радиоприемников и с их использованием в крупных городах, в условиях наличия большого количества радиостанций и сложной электромагнитной обстановки. Автор данной статьи рассматривает положение российского рынка радиоприемников УКВ, их недостатки и варианты решения данных проблем. Все это свойственно не только России, но будет справедливо и в Беларуси.

Взгляд на российский рынок

Классифицируя бытовые приемники по потребительским функциям, можно видеть, что на отечественном рынке присутствуют:

  • миниатюрные приемники с питанием от батарей;
  • небольшие стационарные приборы с сетевым/комбинированным питанием;
  • УКВ-приемники в составе музыкальных центров;
  • автомагнитолы и автомобильные приемники.

Но вы не найдете отечественных бытовых УКВ-приемников, за исключением разве что автомагнитол семейства "Урал". Почему? Ответ вроде бы очевиден - в области портативных устройств, где главное - минимальная стоимость, с продукцией стран Юго-Восточного региона (в основном - Китая) не потягаешься. Про музыкальные центры и автомагнитолы речи вообще нет - технологически сложную технику за столь низкую цену при высоком качестве отечественная промышленность выпускать не умела никогда. В тех же магнитолах семейства "Урал" механические узлы - и лентопротяжный механизм, и CD-проигрыватель - исключительно импортного происхождения. Стационарные же приемники с сетевым питанием как бы выпали из круга интересов производителей. То, что сегодня доступно на рынке, - это либо все те же портативные изделия с сетевым питанием, либо УКВ-тюнеры в составе различных устройств (например, будильников) и музыкальных центров. Первые, как правило, обладают врожденными функциональными недостатками, вторые - достаточно высокой ценой. Кроме того, при желании можно найти высококачественный радиоприемник - но он окажется многодиапазонным. А нужен ли сегодня массовому потребителю в городе длинно-средне-коротковолновый приемник? Ведь качество принимаемого амплитудно-модулированого (AM) сигнала в этих диапазонах чрезвычайно низкое и никакой конкуренции с модулированным по частоте (ЧМ) УКВ-сигналом не выдерживает, особенно в городе - в силу как свойств распространения волн, так и особенностей модуляции. А дополнительные диапазоны приема в дорогом устройстве - это дополнительные деньги, заплаченные фактически ни за что.

В то же время в России потребность в стационарных УКВ-приемниках, может быть, даже выше, чем во многих других странах. В самом деле, даже сегодня редкая домохозяйка на кухне (секретарь в офисе, продавщица в ларьке) обходится без радио. И если не хватает денег на дорогое устройство, приходится использовать либо радиотрансляционные приемники проводного вещания ("трехпрограммники"), либо простенькие УКВ-приемники китайского производства, в лучшем случае - с брендом "Panasonic". Понятно, что радиотрансляционные сети со станциями УКВ-диапазонов конкурировать не могут - ни по числу программ, ни по качеству предаваемого сигнала. Поэтому УКВ-приемники - для дачи, для кухни, даже для работы - продаваться в России будут еще долго. Достаточно вспомнить объем парка приемников проводного вещания ("кухонного радио"), и потенциальная емкость этой потребительской ниши становится понятной. И тут могут проявиться национальные особенности этого рынка, предоставляющие определенный шанс отечественным производителям.

Особенности российского эфира

Что же отличает требования к приемникам УКВ-диапазона в России? Определимся, что речь идет о недорогих аппаратах, использующих сетевое питание и предназначенных для длительного прослушивания. Последнее означает, что требования к качеству воспроизводимого сигнала достаточно высоки - и по спектральному составу, и по наличию помех.

Первая существенная особенность - в России два диапазона УКВ-вещания: 65,8-74,0 и 88-108 МГц, советский и западный, соответственно. И отличия тут не только в собственно частотных участках вещания - различен шаг сетки частот, соответственно 30 и 100 кГц, а также девиация частоты ЧМ-сигнала - 50 и 75 кГц. Даже поляризация излучаемых передатчиками радиосигналов в советском диапазоне - горизонтальная, а в западном - вертикальная!

Кроме того, стандарты кодирования стереосигнала у нас иные, чем в остальном мире. При стереовещании ЧМ-сигнал модулируется так называемым комплесным стереосигналом (КСС). В СССР была принята система с полярно-модулированным (ПМ) сигналом (стандарт Международной организации радиовещания и телевидения - OIRT). При этом аудиосигнал модулирует поднесущую частоту 31,25 кГц, но так, что огибающая положительных полупериодов модулирована сигналом левого стереоканала, отрицательных - правого. Поднесущая подавляется на 14 дБ. В принятом практически во всем мире стандарте международного консультативного комитета по радиовещанию (CCIR) при формировании КСС поднесущая 38 кГц подавляется полностью, а для ее восстановления в приемнике передается пилоттон 19 кГц (рис.1).

Рис.1. Формировоние комплексного стереосигнала (а) и его представление в стандартах OIRT (6) и CCIR (в).

Кроме того, в России в условиях мегаполисов возникают дополнительные проблемы, связанные с расположением передающих центров. Например, для Москвы Останкино, Октябрьское Поле, Балашиха, Шаболовка - далеко не полный перечень географии передатчиков. В результате в зависимости от точки приема уровень сигнала на соседних каналах (с разносом порядка 300-400 кГц) может различаться на десятки децибел, что налагает особые требования на динамический диапазон и избирательность приемников.

Анатомия УКВ-приемника

Классическая схема УКВ-приемника ЧМ-сигнала представлена на рис. 2. Это - приемник с однократным преобразованием частоты (супергетеродинная схема). Сигнал с антенны попадает в высокоча-стотный (ВЧ) тракт, включающий преселектор (входной полосовой фильтр и усилитель высокой частоты - УВЧ), а также гетеродин со смесителем. УВЧ не только усиливает сигнал, но и фильтрует его в заданной полосе. Усиленный ВЧ-сигнал поступает в смеситель, в идеале реализующий функцию U =u н cos(2пf н t u ub>г cos(2пf г t ), где f н , u н и f г u г - частота и амплитуда входного сигнала и сигнала гетеродина, соответственно. После смесителя сигнал (с точностью до амплитуды) имеет вид cos2п(f н +f г )t +cos2п(f н -f г )t , что соответствует модулированным сигналам на несущих f н +f г и |f н -f г |. Разностную составляющую - промежуточную частоту (ПЧ) f пч =|f н -f г | - выделяет полосовым фильтром и в дальнейшем работают именно с ней.

Сигнал ПЧ фильтруется и усиливается, после чего сигнал попадет на частотный детектор - ЧМ-демодулятор (преобразователь частота-напряжение). После демодуляции низкочастотный сигнал усиливается в усилитель звуковой частоты и далее - на устройства воспроизведения. При трансляции стереопрограмм после частотного детектора сигнал сначала поступает стереодекодер. Разумеется, мы перечислили лишь самые основные функциональные блоки - не рассматривая такие важные для бытового приемника функции, как автоподстройка частоты, бесшумная настройка, генерация комфортного шума, автоматическая регулировка уровня и т.д. Настройка на частоту станции происходит посредством одновременного изменения частоты гетеродина и LC-контуров преселектора.


Рис.2. Обобщенная блок-схема супергетеродинного ЧМ-приемника.

В супергетеродинных схемах одна из основных проблем - необходимость подавлять сигнал в так называемом зеркальном канале. Его природа понятна - поскольку после смесителя выделяется f пч =|f н -f г |, в тракт ПЧ может попасть как сигнал с частотой f н =f г -f пч (если частота гетеродина выше сигнала настройки), так и с f з =f г +f пч , т.е. сигнал, расположенный симметрично частоте настройки относительно частоты гетеродина. Следовательно, f з =f н ±2f пч в зависимости от того, выше или ниже частоты гетеродина находится полезный сигнал. Понятно, что подавлять сигнал в зеркальном канале необходимо в преселекторе, до смесителя. Причем чем выше ПЧ, тем больше разнос основного и зеркального каналов и тем проще решить эту проблему. Но даже для стандартной ПЧ 10,7 МГц зеркальный канал диапазона "советского" УКВ оказывается в области 87,2-95,4 МГц, где в России расположены некоторые телевизионные каналы и их звуковое сопровождение, а теперь ещё и радиостанции западного диапазона вещания. В работе показано, что в этом случае избирательность по зеркальному каналу должна быть по крайней мере не хуже 78 дБ - а в ряде случаев и всех 100 дБ. Можно ли добиться столь высокой избирательности в бытовой аппаратуре - большой вопрос.

Не менее важной характеристикой является и избирательность по соседнему каналу. А для УКВ допустимый разнос соседних каналов при трансляции различных программ из соседних зон -лишь 180 кГц. Конечно, практически в одной зоне он составляет 300-400 кГц. Особенно важна избирательность по соседнему каналу для городов, где радиовещание ведется из нескольких центров, и соседние по частоте, но разнесенные в пространстве радиостанции могут наводить в антенне сигналы, различающиеся по уровню на десятки децибел.

Рис.3. Построение УKB-приемнико на комплекте ИС фирмы Philips.


Рис.4. Структурная схема ИС TDA7021.

Однако главная проблема УКВ-приемника - необходимость обеспечить его низкую стоимость, поскольку технически все перечисленные трудности вполне разрешимы. Собственно, это проблема всей бытовой техники, и решается она стандартно - выпуском массовых ИС, в которые интегрировано как можно больше функциональных блоков устройства. Один из первых однокристальных тюнеров выпустила фирма Philips еще в 1983-м - это была знаменитая TDA7000. Заложенные в ней решения оказались столь удачными, что она послужила прототипом многих ИС - как прямых аналогов, например КС1066ХА1, К174ХА42, так и более совершенных схем самой компании Philips. Это такие ИС, как TDA7021 с расширенной полосой пропускания для приема стереосигнала, и TDA7088, включающая систему поиска и автоматической настройки на частоту станции. Основное достоинство таких схем - простота реализации устройства с минимумом дополнительных компонентов. Пример схемы законченного приемника на TDA7021 со стереодекодером (TDA7040T) и усилителем (TDA7050T) приведен на рис.3. Заметим, что для миниатюрного монофонического приемника последние две ИС не нужны.

Обратная сторона этого, безусловно, наиболее дешевого решения - низкая ПЧ, порядка 70 кГц (как правило, 69-76 кГц). Столь низкая ПЧ позволила применить активные полосовые фильтры на базе операционных усилителей, входящих в состав ИС приемника (рис.4). Но при этом зеркальный канал оказывается отстоящим от частоты настройки менее чем на 150 кГц, следовательно, избирательность по соседнему каналу отсутствует. Спасает лишь то, что реально каналы вещания разнесены на 300-400 кГц. Однако помехи из зеркального канала увеличивают коэффициент шума приемника по меньшей мере на 3 дБ. Понятно, что повышение чувствительности при столь низкой избирательности ни к чему хорошему не приведет. Кроме того, в диапазоне 88-108 МГц максимальная девиация ±75 кГц практически совпадает с ПЧ и в тракте такой ПЧ неизбежны нелинейные искажения ЧМ-сигнала. Поэтому в схему введена отрицательная обратная связь по частоте (ОЧС), ограничивающая девиацию частоты принимаемого ЧМ-сигнала. Благодаря ОЧС не только снижается девиация до 15-20 кГц, но и улучшается точность настройки гетеродина - реализуется автоподстройка частоты. Сигнал ОЧС формируется усилителем-ограничителем после частотного демодулятора, и он управляет подстроечными варикапами гетеродина (см. рис.4). Однако при уменьшении полосы сигнала снижается его динамический диапазон, следовательно, ухудшается качество аудиосигнала. К ухудшению восприятия ведут и неизбежные искажения на пиках девиации. Поскольку в ИС один и тот же варикап используется и в частотозадающем контуре гетеродина, и в петле обратной связи по частоте, крутизна перестройки гетеродина оказывается разной в начале и конце диапазона, а следовательно, различен и уровень выходного НЧ-сигнала. ИС семейства TDA70xx и их аналоги многократно и подробно описаны (например, в работе ). Нам же важно констатировать, что УКВ-приемники на этих ИС для российских мегаполисов неприемлемы, если речь не идет об игрушках.

Разумеется, все перечисленные проблемы хорошо известны, поэтому производится немало специализированных ИС для радиоаппаратуры со стандартной ПЧ 10,7 МГц. Один из многих примеров - стерео АМ/ЧМ-приемник ТЕА5711 (рис.5). Схема его включения показана на рис.6. Данная ИС содержит декодер стереоканала - но в стандарте CCIR. Компания Philips выпускает и ИС УКВ-ресивера без стереодекодера - ТЕА5710. Собственно, аналогичных схем (со стереодекодером и без) сегодня достаточно много -их производят такие фирмы, как Sony (CXA1238 и 1538), Sanyo, Matsushita, Rohm, Toshiba и др. (подробнее элементная база современных приемников рассмотрена, например, в работе ).

Однако при всем многообразии современной элементной базы практически все недорогие модели в России представлены достаточно однотипными приемниками китайского производства, в лучшем случае - с ПЧ 10,7 МГц, поддерживающие диапазоны 65,8-74 и 88-108 МГц, с настройкой на станцию посредством вращения верньера. Как правило, это - однодиапазонные приемники, рассчитанные на частотный интервал 65-108 МГц. В результате принимаемые частоты оказываются на краях их рабочего диапазона. При столь большом перекрытии крайне трудно обеспечить сопряжение входного фильтра и частотозадающего контура гетеродина -а настройка осуществляется одновременной перестройкой переменных конденсаторов в этих LC-контурах. У них различный коэффициент перекрытия и, как правило, хорошего сопряжения удается добиться в трех точках - на краях и в середине диапазона, что приводит к неравномерной чувствительности приемника по диапазону. Кроме того, столь большое перекрытие при неравномерном расположении каналов вещания (у краев) крайне затрудняет настройку на станцию - зачастую программу от программы отделяет поворот ручки настройки на доли градуса. Ясно, что определить значение частоты по шкале настройки такого радиоприемника невозможно.


Рис.5. Структурная схема ИС стереотюнера ТЕА5711.

Кроме того, необходимость высокой помехозащищенности городского приемника накладывает повышенные требования на точностъ настройки всех контуров - а их несколько, и они содержат высокодобротные катушки индуктивности, выполненные в виде отдельного элемента. Настройка этих узлов плохо совмещается с идеологией массового производства посредством низкоквалифицированного персонала. В результате практически все УКВ-приемники китайского производства отличаются не только достаточно примитивной схемотехникой и непродуманной в плане помехозащищенности конструкцией. В массе своей их внутренние узлы попросту не настроены - ведь приемник где-то как-то работает, а насколько хорошо, производителя не интересует.

Какой приемник нужен России?

Несколько лет назад таким вопросом задались сотрудники фирмы "Постамаркет", объявив, при участии радиостанции "Эхо Москвы", конкурс на лучшее решение УКВ-приемника для России. В качестве обязательных требований указывалась работа в двух УКВ-диапазонах, возможность цифровой настройки с запоминанием по крайней мере 10 станций, индикация частоты настройки, наличие гнезда для подключения внешней телевизионной антенны, внешнее сетевое питание, уверенная работа в условиях сложной электромагнитной обстановки мегаполиса, высокая технологичность и низкая стоимость. К сожалению, организаторам было представлено лишь одно интересное решение от группы разработчиков НИИ РП -зато действительно удовлетворявшее их непростым требованиям. В чем его суть? Разработчики решили отказаться от классической схемы супергетеродинного приемника с однократным преобразованием частоты и предложили в общем-то известный принцип инфрадинного приема, когда ПЧ существенно выше диапазона рабочих частот. Данный метод иногда применяли в дорогих стационарных АМ-приемниках , но в УКВ-диапазоне такой подход представлялся чрезмерно дорогостоящим. Однако элементная база развивается, и то, что еще вчера было эксклюзивным, сегодня оказывается массовым и недорогим.


Рис.6. Схема включения ТЕА5711 с УНЧ TDA7050T.

При инфрадинной схеме преселектор делается неперестраиваемым и широкополосным - на весь диапазон приема, что существенно упрощает его конструкцию. Правда, неизбежная расплата за это - входные цепи (фильтры, УВЧ, смеситель) должны обладать широким динамическим диапазоном и высокой линейностью. Но это уже схемотехническая проблема, вполне решаемая при современной элементной базе. Настройка на станцию осуществляется исключительно путем перестройки частоты первого гетеродина.

В предложенной разработчиками схеме (см. рис.7) используется два раздельных входных полосовых фильтра на диапазоны 65,8-74 и 88-108 МГц и двойное преобразование частоты. Первая ПЧ - 250 МГц, следовательно, частота первого гетеродина должна быть в диапазоне 315-360 МГц. Таким образом, зеркальный канал оказывается очень далеко от рабочего - выше 565 МГц, и проблем с его подавлением входным фильтром не возникает.

Пожалуй, ключевой элемент данного приемника - фильтр ПЧ. Его АЧХ должна быть практически прямоугольной, с полосой пропускания 250 кГц при центральной частоте 250 МГц. Сумев решить данную проблему, разработчики получили приемник, имеющий всего один перестраиваемый элемент (первый гетеродин). После фильтра ПЧ сигнал преобразуется во вторую ПЧ - уже стандартную, 10,7 МГц. При этом второй гетеродин настроен на фиксированную частоту, и всю дальнейшую обработку сигнала реализуют стандартные элементы хорошо отработанного и дешевого тракта ПЧ 10,7 МГц. Иными словами, в стандартном супергетеродинном приемнике зафиксирована частота гетеродина, а вместо перестраиваемого сложного преселектора введен широкополосный неперестраиваемый преселектор и высоколинейный высокочастотный тракт до первой ПЧ. Это позволило решить проблемы избирательности по зеркальному и соседним каналам и предотвратить нелинейные комбинационные помехи.


Рис.7. Функционольноя схеме инфрадинного УKB-приемника с широкополосным преселектором.

Отметим, что еще сравнительно недавно существенной проблемой было отсутствие ИС стереодекодера, поддерживающего как стандарт CCIR (пилот-тон), так и OIRT (ПМ). Однако она отпала с тех пор, как "Ангстрем" начал производить ИС КР174ХА51 - стереодекодер с синхронизацией посредством ФАПЧ, с автоматическим и принудительным определением стандартов декодирования (рис. 8).

Впрочем, "Ангстрем" выпускает комплект ИС для УКВ-приемника. Но поскольку это предприятие ориентировано на рынок Юго-восточного региона, производимая им ИС тюнера КР174ХА34 рассчитана на низкую ПЧ, около 70 кГц. Выше мы говорили о недостатке таких тюнеров и их непригодности для качественных приемнике особенно в России. Однако рынок ИС тюнеров достаточно велик и есть из чего выбирать. Например, минское НПО "Интеграл" производит микросхемы ILA1238NS и ILA1191NS - аналоги широко известных ИС компании Sony CXA1238 и СХА 1191 (стерео- и моно-фонические приемники, рассчитанные на ПЧ 10,7 МГц).

Крайне важный аспект - управление приемником. Радиостанций в обоих УКВ-диапазонах в Москве - свыше тридцати, в других крупных городах не намного меньше. Поэтому цифровая настройка с запоминанием по крайней мере 10 станций и с индикацией частоты приема, - не роскошь, а необходимое требование к стационарному приемнику. Но при сегодняшнем разнообразии синтезаторов частот, индикаторов всех типов и их контроллеров, а также универсальных микроконтроллеров проблем с недорогой реализацией данной функции нет - вплоть до управления через ИК-порт. В дешевых китайских моделях цифровой настройки нет, а это еще один потенциальный "плюс" для отечественных производителей. Впрочем, встречаются дешевые китайские УКВ-приемники с цифровой настройкой. (Как правило, система настройки и в них работает, в вот собственно приемник - нет.)

Таким образом, предпосылки для производства уникального отечественного приемника - "кухонного УКВ-радио" есть. Прежде всего, недорогие зарубежные модели не справляются со сложной помеховой обстановкой и особенностями трансляции в крупных российских городах. Кроме того, у них примитивен, а потому слишком неудобен интерфейс пользователя. Наконец, только дорогие модели полноценно поддерживают работу в двух российских УКВ-диапазонах, особенно в части стереоприема (но врожденные недостатки устройств со стандартной ПЧ 10,7 МГц остаются при них). В то же время реализация всех дополнительных функций -задача достаточно простая по сравнению с качественным приемом сигнала и не существенно увеличивает себестоимость изделия, особенно при массовом производстве. А вот схема собственно тюнера заслуживает самого пристального внимания, и предложенная и испытанная разработчиками НИИ РП концепция инфрадинного УКВ-приемника может стать тем самым недостающим звеном, которое способно соединить высокое качество и низкую цену -если, конечно же, кто-нибудь не предложит более оптимальное решение.

Чего в России нет

Единственное, чего нет в нашей стране для массовых УКВ-приемников, - это возможности-производства современных корпусов. Ведь радиоприемник, как и любая бытовая техника, - это не только носитель технической функции, но и элемент интерьера, предмет, который должен радовать глаз. И без разнообразных и качественных корпусов самая интересная и перспективная разработка так и останется внутри макетной коробки. Не решив столь, казалось бы, далекую от электроники проблему производства качественных пластмассовых изделий, выпуск электронной бытовой техники в России невозможен. А это - вопрос вложения денег в приобретение оборудования и, что самое главное, в технологию разработки пресс-форм. Одному производителю, наверное, это не по карману. Конечно, корпуса (или пресс-формы) можно заказывать в том же Китае - но, во-первых, это достаточно дорогое удовольствие, а во-вторых, в этом случае крайне тяжело гарантировать, что эти корпуса окажутся не только у их заказчика, но и у всех желающих их купить. К авторским правам и пиратским копиям там относятся весьма своеобразно - по западным понятиям. И защита от этого - опять же большие деньги.

Но может быть, радиостанции заинтересованы, чтобы их программы доходили до как можно большего числа потенциальных слушателей. И чтобы качество приема их сигнала было достаточно высоким? Так не пора ли в России организовать консорциум разработчиков, производителей УКВ-аппаратуры и радиовещательных предприятий? Подобные консорциумы по вопросам развития передовых технологий распространены во всем мире. Пусть УКВ-ве-щание - технология не новая, но поскольку в России существует проблема, непосильная для одного производителя, но в решении которой потенциально заинтересованы многие, может быть, путь кооперации принесет результат?

Источники

  1. Кононович Л.М. Современный радиовещательный приемник - М.: Радио и связь, 1986.
  2. Поляков В. Однокристальные ЧМ приемники. - Радио, 1997, №2.
  3. Куликов Г., Парамонов А. Радиоприемные тракты бытовой аудиоаппаратуры (часть 1 и 2). - Ремонт электронной техники, 2000, № 2-3.

Предлагаемый приемник УКВ ЧМ представляет собой функционально законченную конструкцию с линейным выходом, подключаемую к усилителю мощности НЧ. Предназначен для приема сигналов стереовещания с системой «пилот-тон» в диапазоне 88...108 МГц. Шаг перестройки приемника 0,05 МГц. Напряжение питания – 9 В. Ток потребления – 90 мА. Реальная чувствительность – не хуже 3 мкВ.

В конструкции приемника реализовано несколько идей.
Во-первых , приемник имеет лёгкую настройку, с которой разберется любая домохозяйка. Имеется 6 кнопок для выбора канала и 2 кнопки для настройки выбранного канала (увеличение и уменьшение частоты). Также есть альтернативный вариант с использованием энкодера для тех, кто предпочитает «покрутить» настройку.

Во-вторых , используется минимальная и достаточная индикация на доступном четырехразрядном семисегентном индикаторе с общим анодом. В-третьих, при кажущейся сложности, этот приемник схемотехнически прост в сборке и настройке, а также дешев по составу электронных компонентов.

Приемник состоит из двух блоков: блока управления и блока тюнера. Конструктивно эти блоки собраны на двух платах. Принципиальная схема блока управления показана ниже.

Основой блока управления является микроконтроллер PIC16F628A фирмы Microchip. Для увеличения числа цифровых линий используется расширение, реализованное на сдвиговом регистре с защелкой 74HC595, который выпускается многими производителями.

Для индикации используется светодиодный четырехразрядный семисегментный индикатор с общим анодом типа LTC-5623 фирмы Liteon. Аналогичные по цоколевке индикаторы выпускаются и другими фирмами, например, индикатор RL-F5620. Если вы не найдете подходящий индикатор, то его аналог можно собрать на любых одноразрядных семисегментных индикаторах с общим анодом, объединив одноименные линии сегментов (для этого потребуется изменить рисунок печатной платы).

Микроконтроллер последовательно записывает байты в сдвиговый регистр: на линии DS устанавливает очередной бит необходимого логического уровня (0 или 1), затем задним фронтом сигнала (переход из 1 в 0) на линии CH_CP задвигает этот бит в регистр и, наконец, задним фронтом на линии ST_CP инициирует появление на выходах регистра записанных последних восьми бит.

Программно-аппаратно реализована так называемая динамическая индикация – особый способ работы, когда сегменты в изображениях символов зажигаются поочередно на определенные интервалы времени. Для индикации дробной части шага перестройки 0,05 МГц используется децимальная точка в четвертом разряде, под включением которой понимается этот «хвостик». С целью увеличения нагрузочной способности микроконтроллера использованы ключи на транзисторах КТ3107 (с любым буквенным индексом).

К линиям сегментов подключены кнопки. Опрос кнопок происходит одновременно с динамической индикацией, что приводит к моментальной оценке состояний «нажато» или «отпущено». Для предотвращения шунтирования кнопками сегментов индикатора последовательно включен резистор R6, в итоге ток течет по цепи с меньшим сопротивлением.

Использован инкрементирующий энкодер типа PEC12. Его можно заменить подходящим по цоколёвке энкодером из серии EC11. Также в продаже можно встретить и иные именования энкодеров, которые идентичны по цоколевке с PEC12.

Номиналы сопротивлений и конденсаторов в блоке управления могут отличаться от указанных в пределах +/–20%. Возможно использование любых нормально разомкнутых кнопок подходящих габаритов, например, тактовые кнопки TS-A6PG-130. Микросхемный стабилизатор 7805 заменим на КР142ЕН5А.

Тюнер содержит минимум радиодеталей и не содержит редких или дорогих элементов. К особенностям схемотехники можно отнести требование минимизации размеров выводов компонентов и проводников. Блок тюнера собран на микросхеме однокристального приемника TEA5711 фирмы Philips и микросхеме синтезатора частоты LM7001J фирмы Sanyo. Принципиальная схема блока тюнера показана на рис. 2.

Микросхема TEA5711 представляет собой однокристальный супергетеродинный стереофонический УКВ радиоприемник. Сигнал с гетеродина приемника TEA5711 (вывод 23) через разделительный конденсатор С23 подается на вход фазового детектора синтезатора частоты LM7001J (вывод 11). LM7001J на выходе частотного детектора (вывод 14) формирует сигнал, который подается на инвертирующий ФНЧ, собранный на транзисторах КТ3102 (с любым буквенным индексом), и затем подается на вход управления генераторов управляемых напряжением. Микросхемы TEA5711 и LM7001 желательно установить на панели для избежания перегрева во время монтажа.

Катушки индуктивности бескаркасные без сердечников. Наматываются плотно виток к витку: L1 – 7 витков на оправке 4мм, L2 – 10 витков на оправке 3мм, L3 – 12 витков на оправке 3мм. Все катушки наматываются проводом ПЭЛ-0,5.

Светодиод HL1 любого типа, например, АЛ307. Полярные конденсаторы электролитические, остальные – керамические. Подстроечный резистор R4 любой малогабаритный, например, типа СП3-38А.

Керамические радиочастотные фильтры ZQ1, ZQ2 и резонатор ZQ3 на частоту 10,7 МГц. Кварц ZQ4 в цепи образцового генератора LM7001 – 4 МГц (программно сделан пересчет на более распространенный кварц, т.к. в оригинале используется дефицитный кварц на 7,2 МГц).

Сборка, наладка, порядок работы.

Печатные платы изготавливаются любым доступным способом, например, способом ЛУТ. Впаиваются перемычки, низкопрофильные компоненты, затем крупногабаритные элементы. Платы отмывают подходящем растворителем и проверяются на просвет на предмет волосковых коротких замыканий и непропаев. Прошитый микроконтроллер устанавливаем в панель на плату управления, внимательно проверяя правильное положение ключа.

Плату управления временно отключаем от платы тюнера. Подаем питание на плату управления и смотрим реакцию индикатора на нажатия кнопок и вращение энкодера. Настройки в каналах, а также последний выбранный канал должны сохраняться после повторных включений.

Соединяем платы управления и тюнера. На линии выхода стереосигнала тюнера подключаем наушники, либо усилитель (например, компьютерные активныее колонки). Подключаем к антенному входу тюнера отрезок провода 30-40 см. Подаем питание от стабилизированного источника. Настраиваемся на крайнюю станцию в верхней части диапазона, раздвигая витки L2. Затем настраиваем режим стереоприема подстроечным резистором R4. Находим такое положение R4, при котором все станции принимаются в режиме стерео. В режиме стерео светится светодиод HL1. На этом настройку можно считать законченной.

Фотографии и монтажные рисунки.

Радио 2002 №10

Детекторные приёмники обычно изготавливают для приёма радиовещательных станций, работающих с AM в диапазонах ДВ, СВ и реже КВ. В диапазоне же УКВ их практически не используют. Это связано, во-первых, с тем, что надо получить уровень сигнала, достаточный для его детектирования. В диапазонах ДВ и СВ это достигается увеличением длины антенны, в УКВ диапазоне делать это почти бесполезно, так как длина волны составляет всего несколько метров. Во-вторых, необходимо обеспечить селекцию принимаемого сигнала. Если в ДВ и СВ диапазонах для этого нужна добротность нагруженного контура 25...100 и контур можно реализовать на обычных LC-элементах, то в УКВ диапазоне необходима добротность более 100 и получить её не так просто. Есть ещё одна проблема - простой диодный детектор способен демодулировать лишь сигналы с AM. Поэтому для демодуляции ЧМ сигналов необходимо предварительно преобразовать ЧМ в AM. Сделать это можно на скате амплитудно-частотной характеристики (резонансной кривой) колебательного контура, как показано на рис. 1. При такой настройке изменения частоты принимаемого сигнала приводят к изменению его амплитуды. После этого сигнал можно демодулировать простым диодным детектором. Понятно, что для хорошего преобразования необходима большая крутизна характеристики, т.е. опять-таки большая добротность контура.

Рис.1. АЧХ

Высокую добротность имеет спиральный объёмный резонатор (рис. 2). Он содержит круглый или прямоугольный экран, внутри которого размещена однослойная катушка. Один её конец замкнут на экран, а второй разомкнут. Для перестройки резонатора по частоте со стороны разомкнутого вывода спирали к ней подводят металлический сердечник или пластину, при этом изменяется ёмкость резонатора. Добротность ненагруженных спиральных резонаторов, в зависимости от их конструкции и частоты настройки, может находиться в пределах 200...5000.


Рис.2. Спиральный объёмный резонатор

Схема детекторного УКВ ЧМ приёмника показана на рис. 3. Его основой является спиральный объёмный резонатор. К спирали через разъём XS1 подключается внешняя антенна. По частоте приёмник перестраивается конденсатором переменной ёмкости С1. На диодах VD1, VD2 собран полумостовой выпрямитель (детектор), на который через конденсатор С2 поступает сигнал от резонатора. К выходу детектора экранированным проводом (его ёмкость сглаживает ВЧ пульсации продетектированного сигнала) подключают нагрузку - высокоомные телефоны или УЗЧ с большим входным сопротивлением. Чем выше сопротивление нагрузки, тем больше будет добротность резонатора, а значит, больший сигнал поступит на диоды и увеличится уровень сигнала ЗЧ.


Рис.3. Приемный контур УКВ

Для изготовления такого приёмника необходимо в первую очередь сделать спиральный резонатор. Для него подойдет цилиндрическая металлическая банка из лужёной жести, желательно с металлической крышкой. Конструкция приёмника показана на рис. 4, он рассчитан на диапазон 88... 108 МГц. Использовалась банка 1 из-под кофе «Nescafe» диаметром 75 и высотой 70 мм. Спираль 2 намотана проводом ПЭВ-2 диаметром 2 мм, она содержит 6 витков. Намотка бескаркасная, диаметром 35 мм и длиной 36...40 мм. Количество витков желательно сделать чуть больше, чтобы при необходимости в дальнейшем провести подстройку укорочением спирали. Нижний конец провода пропускают через отверстие в боковой стенке, загибают и припаивают к внешней боковой стороне. На нижней или боковой стороне устанавливают разъём XS1 и центральный контакт соединяют со спиралью на расстоянии примерно 0,1...0,15 витка от начала намотки (не считая прямого отрезка провода). На внутренней стороне банки, ближе к концу спирали, распаивают диоды, а один из выводов через изоляционную втулку выводят наружу.


Рис.4. Конструкция резонатора

Конденсатором С2 служит отрезок провода ПЭВ-2 0,4...0,5 длиной 20...30 мм, размещённый рядом с витками спирали. Подвижная часть конденсатора С1 выполнена в виде металлического диска 3, который прикреплён к винту 4. Этот винт перемещается в гайке или втулке 5, которая припаивается к крышке 6. Диск 3 можно изготовить из жести, его диаметр равен диаметру спирали, для уменьшения потерь в нём надо вырезать 1...3 сектора с углом несколько градусов. Для изготовления спирального резонатора можно использовать металлические банки другого диаметра, причём, чем больше диаметр, тем большую добротность можно получить. Рассчитать резонатор с банкой другого диаметра или на другой диапазон можно по упрощённой методике , которая дает вполне удовлетворительные результаты. Прежде всего, следует стремиться выбрать банку (см. рис. 2) с отношением H/D = 1,2...1,3, где Н - высота банки; D - диаметр банки. Если отношение будет другим, возрастет погрешность расчётов. Количество витков N = 2586/(Fr), где F - верхняя частота настройки (МГц); r - радиус банки (см). Диаметр намотки спирали (по центру провода) d = r, длина намотки I = 1,5r, шаг намотки а = I/N, диаметр провода b = а/4. Расстояние от концов катушки до нижней и верхней стенок желательно выдержать в пределах L = 0,25...0,3D. При выборе банки следует учитывать следующее. Значение имеет чистота обработки внутренней поверхности, хорошо, если она блестящая. Желательно, чтобы не было стыков, расположенных параллельно катушке, но так как они в большинстве случаев есть, надо обратить внимание на их качество, а при необходимости пропаять. Нижний, заземлённый конец катушки надо подводить к боковой стенке под прямым углом. На основании сказанного выше можно сделать вывод о том, что банка, использованная автором, не является лучшим вариантом. Отношение H/D было около 1, из-за этого нижние витки оказались слишком близко к нижней стенке, а значит, уменьшилась добротность. Погрешность расчёта не превысила 8...10 % - количество витков должно быть 6,5, а после подстройки получилось 6. Антенной служил отрезок провода диаметром 1...1,5 мм и длиной четверть волны, в данном случае около 70 см. Уровень принимаемого сигнала сильно зависит от ориентации антенны и места её расположения. В приёмнике желательно использовать высокочастотные германиевые детекторные диоды с возможно меньшей ёмкостью. Чтобы получить громкий приём на головные телефоны, необходима большая напряжённость поля принимаемого сигнала, что возможно в непосредственной близости от радиостанции. При этом надо стремиться повышать добротность резонатора, уменьшая ёмкость конденсатора С2, т. е. удаляя отрезок провода от спирали. Если расстояние до радиостанции значительно, приём на телефоны затруднён из-за малого уровня сигналя. Тогда сигнал от детектора надо подать на УЗЧ, при этом его входное сопротивление должно быть более 100 кОм, а чувствительность - 1...3 мВ. Если такого УЗЧ нет, то его можно изготовить самостоятельно, сделав, таким образом, УКВ ЧМ приёмник целиком. Кроме того, можно использовать имеющийся УЗЧ, сделав согласующий каскад на полевом транзисторе.

При испытании макета приёмника у автора статьи, из-за удалённости от передающих радиостанций (ближайшая, но не самая мощная, на расстоянии 2 км, остальные далее) на телефоны сопротивлением несколько кОм, принималась только одна радиостанция, причём слабо. Пришлось добавить УЗЧ, после чего очень громко (примерно одинаково) и с хорошим качеством принимались три радиостанции (из семи работающих в этом диапазоне). Две из них громче принимались при горизонтальной ориентации антенны, а одна - вертикальной. По частоте эти радиостанции отстоят друг от друга примерно на 2 МГц, и взаимных помех не наблюдалось. Приёмник располагался на подоконнике, антенна была длиной около 70 см. Измерения показали, что полоса пропускания нагруженного спирального резонатора в этом макете составила около 800...850 кГц, что соответствует добротности примерно 125. Если уровень сигнала большой, добротность целесообразно повысить, увеличив тем самым избирательность, подключив входной разъём ближе к заземлённому концу спирали. Следует отметить, что в приёмнике нет системы АРУ или ограничителя, поэтому напряжение выходного сигнала ЗЧ зависит от уровня принимаемого сигнала. Это значит, что более мощные радиостанции принимаются с большей громкостью.


Рис.5а. Схема УЗЧ


Рис.5б. Схема истокового повторителя

Схема УЗЧ показана на рис. 5,а. Его основой является микросхема К174УН7 в стандартном упрощённом включении. На входе УЗЧ установлен истоковый повторитель на транзисторе VT1, повышающий входное сопротивление. Громкость регулируется резистором R3, резистором R4 устанавливают оптимальный коэффициент усиления микросхемы. Соединение с приёмником следует делать экранированным проводом минимально возможной длины. Объединив резонатор и УЗЧ в одну конструкцию, например, в корпусе от абонентского громкоговорителя, можно сделать неплохой УКВ ЧМ приёмник. Если уровень сигналов в месте приёма велик настолько, что на выходе приёмника будет постоянное продетектированное напряжение более 1 В, схему истокового повторителя надо доработать в соответствии с рис. 5,б.


Рис.6. Печатная плата

Все детали УЗЧ размещают на печатной плате из фольгированного стеклотекстолита, эскиз которой показан на рис. 6. В устройстве можно применить следующие детали: полевой транзистор - КП303Г, Д, КП307А, Б; полярные конденсаторы - К50; неполярные - К10-17; переменный резистор - СП4, СПО; подстроечный - СП3-19; постоянные резисторы - МЛТ, С2-33.

ЛИТЕРАТУРА:
1. Поляков В. Теория: понемногу обо всём. 4.3 Радиоприёмники AM сигналов. - Радио, 1999, № 9, с. 49,50.
2. Поляков В. Усовершенствование детекторного приёмника. - Радио, 2001, № 1, с. 52, 53.
3. Ханзел Г. Справочник по расчёту фильтров. - М.: Сов. Радио, 1974.

И. Александров, г. Курск

https://pandia.ru/text/79/018/images/image003_61.jpg" width="646" height="327">

https://pandia.ru/text/79/018/images/image005_53.jpg" width="661" height="472 src=">

Ахтунг! Кривой перевод с китайского!

Сканер радиоприемник 45-870MHz FM

Он использует отличную искусства все-TDQ-38 головы, а также того высокочастотных компонентов готовой продукции LA7533 коробке на месте, следовательно, высокая чувствительность приемника, стабильной работы и легко производить. Машина может получить 45-870MHz Диапазон частот всех сигналов, а также может использоваться для прослушивания FM-радио, ТВ звука, а также беспроводные телефоны и рацию сигналы и т. д.; с аудио и видео сигнала выходного порта, монитор может поддержать и стать полноправным -- Канал ТВ приемники, телевизоры могут быть отремонтированы в то время как аудио и видео сигнала источника.

Электронные схемы" href="/text/category/yelektronnie_shemi/" rel="bookmark">электронные схемы преобразования и два светодиодных LED1 соответственно красный, зеленый, желтый цвет три инструкции. L-диапазоне частот до 45MHz ~ 150MHz, H пункт частотой 142MHz ~ 380MHz, U частоты выше 375MHz ~ 870MHz.

В случае использования высокочастотного чувствительность первый полный добавленную высокое качество продукта типа, полная ликвидация в целом низкая чувствительность радио, плохой селективности струн и вопроса о Тайване. LA7533 поле используется в выпуске продукции для звука IF 6.5MHz, предсессионная построили на его месте, на поверхностных акустических волнах и поставить фильтр LA7533 блок; одной строке с 11 футов, в которой для ввода PIN-IF ①, ② заземлении пешком, 12V электропитания Сцепляющий ③, ⑥ футов для вывода звука, ⑦ Сцепляющий выход напряжения 6.8V СМЖЛ, ⑩ футов для вывода видео сигнала, который будет основываться корпуса.

Аудио усилитель IC2 блок модели ULN2283B, если не просто купить в состав могут быть использованы на LM386 аудио усилитель цепи. Тюнер 220KΩ потенциометр W1 выбранным цветом области перестройки частоты потенциометром, тюнер 30V DC микро-инструкции с помощью первой таблице.

Радио приемники от 200мГц -> Приемник на 433мГц стабилизация на ПАВ от "Blaze"

http://*****/index. php? act=categories&CODE=article&article=1174

ВЧ часть, разработанную моим земляком, господином ШАТУНОМ, я вообще считаю лучшей в мире. Дальше идет пьезик на 10,7 МГц (его в принципе лучше заменить одиночным контуром, так как разница между частотами ПАВ-ов может превышать его полосу пропускания). Контур нужен и в том случае, если не удается прикупить резонаторы со стандартной разницей в ПЧ, на которую существуют промышленные фильтры. Транзистор смесителя нагружают на первичную его обмотку, а ко вторичной подключают через развязывающую емкость усилительный каскад на транзисторе, либо от отвода этой катушки (кому как нравится).В качестве УПЧ+ЧД применен стандартный приемник с низкой ПЧ, который можно подстраивать в небольших пределах.
Приемник очень прилично работал. Показал приблизительно 20% выигрыш по расстоянию в сравнении со сканером («моторолла» модель не помню), видимо из-за того, что антенна в сканере на все диапазоны сразу. Настройка стабильная (типа настроил и забыл).
.

Мною изготавливались радиоприемники для радиомикрофонов по схожей схематике на различные частоты, только вместо ХА42 использовалась ранее распространенная ХА34-я.
Могу определенно сказать, что приемник заслуживает внимания своей простотой и нормальными характеристиками. Чувствительность достигает на WFM 0.6-08 мкв. По существу это приемник с двойным преобразованием частоты, первая ПЧ-10,7 мгц, вторая 75 кгц в микросхеме. К тому же микросхема имеет АПЧ и поэтому приемник нормально держит частоту сигнала. Рассматриваемый приемник – это приемник на одну частоту, посколько наличие указанного фильтра ПЧ с заданной полосой пропускания реально позволит перестраивать в пределах только 700 кгц. Для того, чтобы немного расширить диапазон перестройки необходимо заменить фильтр ПЧ на контур настроенный на 10,7 мгц. К тому же контур необходимо зашунтировать сопротивлдением на 47-56 ком. для снижения добротности и увеличения полосы пропускания, а еще лучше первую ПЧ сделать на 30 мег. Следует также иметь ввиду, что применяемые полевики имеют высокое входное сопротивления и ненагружают контура, поэтому те имеют высокую добротность и потребуют достаточно точной настройки на частоту. Контур соедененный с гетеродином и отсекающий его гармоники не должен иметь индуктивной связи с другими контурами

Здравствуйте Уважаемые!
Попытаюсь прояснить ситуацию с приемником. Первое (самое обидное). Этот девайс я сделал сам и он работает именно так как сказано в описании.
По поводу несоответствий печатки и схемы вы совершенно правы. Они не совсем соответствуют т. к. я их сделал уже 6 штук и все время чего-то менял.
Емкость на массу нужна в случае использования низкоомной антенны (тоже самое если антенну включать от отвода контура). Затем я отказался от такого включения и строил входную цепь как на схеме. Работают они одинаково, но в варианте как на схеме меньше геморроя с настройкой.
Встречно-параллельные диоды на входе не нужны (они есть внутри 998-го).
Плата одностороняя. В экране только контур 10,7 мГц.
Стабилитрон (извините забыл указать напряжение) на 2,2 вольта. Его задача удержать настройку на прежнем уровне при разряде батарей.
Затвор, на котором делитель напряжения, можно шунтировать на массу емкостью а можно этого не делать (на всякий случай лучше зашунтировать) .
Разницы я не увидел. Затворы транзистора полностью идентичны (их можно менять местами). Контура имеют (кроме 10,7мГц) по 3 витка 0,67 провода на диаметре 4 мм. Схема не смотря на отсутствие экранировки не склонна к возбуждению. Вместо 1-го транзистора пробовался кт399а - практически никакой разницы.
Могут возникнуть сложности с гетеродином на ПАВ. Если он не захочет заводится нужно поиграть емкостями 8 пф вплоть до выкидывания той, что идет от эмитера на массу.
При настройке контура 10,7 нужно быть внимательным. Его настройка несмотря
на низкую частоту очень острая. В отсутствии сигнала может болтаться вокруг да около (не забываем про АПЧГ).Этот эффект может быть принят за нестабильность.
А вообще я поступал следующим образом.
Делал жучек на 433,9мГц, но без оконечного каскада и антенны, клал его в железную каструлю и уносил пока приемник не начнет шипеть.
Подстраивал приемник 2-мя спичками двигая витки контуров пока он не прекращал шуметь. Затем каструлю уносил еще дальше и повторял все заново.
Антенна к приемнику разумеется была подключена.
Были варианты когда емкости входного контура и фильтра(6 пф) приходилось удалять совсем.
УНЧ действительно ЛМ386.Перед ним нужен транзистор, т. к. в типовом включении у ЛМ386 недостаточно усиления для нормальной громкости, потому что уровень нч с ХА42 маловат.
Вообще полезно перед УНЧ поставить ФНЧ (до 4 кГЦ) на ОУ. Очень вырастет разборчивость сигнала.
Следует учесть разницу между экземплярами ХА42(она может быть существенной именно касательно чувствительности и БШН)

С уважением BLAZE.

Ну вот так примерно это будет выглядеть? Или чего еще убрать – добавить?
Какая у нас будет тогда ПЧ? Как ее установить?
Сигнал с гетеродина примерно от 133 до 150 мег, т. к. предполагается вычитание ПЧ на 3-ей гармонике. Правильно?
Сори, если возможно где тупанул, т. к. я только набираюсь знаний в этой теме.

Присоединённое изображение


Blaze

Приблизительно так и будет выглядеть, только контур в истоке первого транзистора не нужен (думаю это опечатка) там емкость должна быть. Меняя ПЧ вы будете настраиваться на нужную вам частоту. ПЧ - это разница по модулю между частотой входного сигнала и частотой гетеродина (или его гармоникой). Под ПЧ я имел ввиду частоту настройки гетеродина ХА 42 (она может быть до 150 мГц) , здесь я не учитываю собственную низкую ПЧ микросхемы.

Один из затворов второго транзистора, тот на который подается сигнал с УВЧ,необходимо через резистор 100 ком соединить с минусом питания.

Желающим собрать рассматриваемый приемник надо помнить, что в нем используются СВЧ полевые транзисторы, применение которых дает неоспоримые преимущества но они боятся пробоя статистическим напряжением и очень большая вероятность, что это может быть одной из причин неудачи.
Нормальная схема ВЧ блока на эту частоту также выложена на стр. 165 у Г. Шрайбера «400 новых радиоэлектронных схем».
Попытка использовать гетеродин на 140-144 мега нормального результата не даст, т. к. там гетеродин работает с петлей АПЧ, выходное напряжение третьей гармоники невелико но оно подается на базу биполярного трангзистора, крутизна преобразования которого намного выше чем полевого транзистора.


Ещё вариант

http://*****/index. php? showtopic=1981&st=0



Свой вариант приёмника Blaze на ХА42, а вернее на smd аналоге TDA7010, представил один из скромняг нашего портала Yusik-san. Схема дополнена ус - лем РЧ того же Blaze, что говорит о достоинстве схемы в плане повторения. Так же в схему введён контроль разряда аккумулятора и возможность подзарядки без снятия источника питания.
Данный вариант приёмника заявлен на чувствительность около 0,3 мкВ.
Печатная плата также прилагается. Ну и снимки со временем…


Принцип работы устройства.
Сигнал принятый антенной усиливается УРЧ и вместе с сигналом гетеродина подается на смеситель. После смесителя получается довольно сложная « каша » состоящая из F гет,
F вх сигн и из их суммы и разности плюс гармоники.
Нас интересует разностная частота между F вх сигн и F гет.
В одном варианте схемы « каша » из частот проходит ФНЧ и усиливается двухкаскадным предварительным УПЧ прежде чем попасть на вход TDA 7000 . В другом варианте вообще какие либо фильтры отсутствуют и вся смесь частот приходит после однокаскадного предварительного усилителя на вход TDA 7000 .
На самом деле оба варианта схемы обладают приблизительно одинаковыми параметрами касательно чувствительности, но в схеме с ФНЧ наблюдались меньшие шумы при приеме одинаково слабых сигналов радиопередатчика.
В качестве собственно УПЧ детектора и предварительного УНЧ работает TDA 7000 в стандартном включении.
Благодаря встроенной АПЧГ, устройству сжатия девиации частоты, TDA 7000 довольно хорошо справляется со своими обязанностями и на ее выходе получается достаточно качественный и разборчивый сигнал. Фильтром по низким частотам является цепочка из резистора 22 к и параллельно ей емкости 5600 пф.
Приемник ведет себя как узкополосный со « скоростной АПЧГ» , из – за чего искажений сигнала НЧ на выходе нет даже если девиация частоты со стороны передатчика окажется чрезмерной.
Без особенных переделок приемник способен работать и на 814 ,6 МГЦ, при этом следует лишь удвоить собственную частоту внутреннего гетеродина микросхемы. Входной контур и контур на входе смесителя можно не трогать, но лучшие результаты будут достигнуты, если ВЧ контура уменьшить каждый на 1 виток.
Настройка.
Настройку приемника лучше всего начать с проверки работы первого гетеродина на ПАВ.
Судя по отзывам с этим часто возникают проблемы.
Лучшим индикатором работоспособности гетеродина, конечно, является контрольный приемник. Если его нет, можно воспользоваться волномером, присоединив его антенну через 1 – 2 пик к выходу гетеродина.
Далее следует убедиться в том, что генерация надежно возникает начиная уже с 2,7 -3 вольт, причем при очень плавном увеличении питающего напряжения. Если гетеродин заводится ненадежно, желательно подобрать емкость между базой и эммитером транзистора (в большинстве случаев ее можно вообще не ставить) . Возможно в подборе будет нуждаться и емкость эммитер – масса.
Требования к монтажу обычные, как для любых СВЧ устройств. Прежде всего аккуратность! Немалую роль играет залуживание дорожек и участков связанных с общей шиной или плюсом питания. Дело в том, что медь со временем окисляется и ее сопротивление для СВЧ становится большим, что может привести к неправильной работе устройства в будущем.
Контактные площадки ПАВ резонатора перед припаиванием на плату следует обязательно залудить. Заклепки, соединяющие стороны платы, изготавливаются из толстого (0,6 - 0,7 мм) очищенного от лака, медного провода и расплющиваются плоскогубцами.
Следующий этап настройки – « подгонка » частоты второго (внутреннего) гетеродина самой микросхемы под нужную ПЧ (она приблизительно равна модулю разности частот передатчика и первого гетеродина минус 75 КГц КГц – это вторая самая низкая ПЧ (внутри TDA 7
ФНЧ (водном из вариантов приемника) в настройке не нуждается, однако он намотан на точно таком же ферритовом сердечнике с подстроечной «чашечкой» , как и контур второго гетеродина и имеет с ним одинаковое количество витков. Оба контура взяты с отслуживших радиовещательных приемников УКВ диапазона.
В качестве эталонных сигналов при настройке использовался весьма полезный, на мой взгляд, прибор – лабораторный радиомикрофон на разные частоты.
На нем подробно останавливаться нет смысла, так как из фотографии видно, что это стандартная схема без оконечного каскада и антенны, предназначенная специально для того чтобы « вытягивать » чувствительность приемника при настройке.
Весьма внимательно следует подобрать емкость 2,2 пф, связывающую вход смесителя с выходом первого гетеродина. Дело в том, что сигнал гетеродина, если он будет слишком сильным, способен сделать приемник « глухим » .
Входные контра экранировать не обязательно. Они настраиваются по максимуму чувствительности приемника сжатием или растяжением витков.
Зарядное устройство и индикация состояния батареи.
На этих удобностях видимо нет смысла задерживаться так как принцип их работы очевиден из принципиальной схемы одного из вариантов приемника.
Ток зарядки АКБ, благодаря генератору стабильного тока на LM 317 , всегда постоянен и равен I(вых) = 1,25 / R. R в схеме равен 18 Ом, при этом зарядный ток около 70 мА..png" width="645" height="356">

Файл печатной платы устройства.

Сергей (blaze)
г Кременчуг
*****@***net
*****@***com
ICQ

В дополнение к статье
Хотел бы добавить, что смысла в двухкаскадном УПЧ нет никакого. Однако второй каскад не мешает.
Сегодня испытал приемник на TDA 7021 (ХА 34) , остался очень довольным.
Схему рисовать видимо смысла нет (из платы все ясно) .

Двухдиапазонный УКВ ЧМ радиоприёмник основой устройства является специализированная микросхема УКВ ЧМ радиоприёмника К174ХА34А, он снабжён светодиодным индикатором настройки и УЗЧ на микросхеме TDA2003.

Основные технические характеристики двухдиапазонный УКВ ЧМ радиоприёмник:

Диапазоны рабочих частот,

МГц…………………65,8…74 и 87,5…108

Напряжение питания, В……7,5…15

Чувствительность, мкВ……………..5

Минимальный потребляемый ток, мА………………50

Выходная мощность при напряжении питания 9 В на нагрузке сопротивлением 4 Ом, Вт……… 1,5

Сигнал, принятый антенной, через контакт 3 колодки ХТ2 поступает на входной контур L1C3C4 и далее на вход ВЧ приёмника DA1. Настраиваются на радиостанцию изменением резонансной частоты колебательного контура гетеродина, состоящего из катушки индуктивности L2, конденсатора СЮ и варикапа VD1. Постоянное напряжение поступает с переменного резистора R7 на варикап VD1 изменяя его ёмкость, а значит, и частоту гетеродина приёмника DA1. Применённый варикап КВ132А обеспечивает перекрытие двух диапазонов УКВ ЧМ радиовещания - 65,8…74 и 87.5… 108 МГц и позволяет принимать звуковое сопровождение находящихся между этими диапазонами телевизионных каналов.

На транзисторе VT1 и светодиоде HL1 собран индикатор настройки на радиостанцию. На выводе 9 микросхемы DA1 формируется постоянное напряжение, обратно пропорциональное уровню принимаемого сигнала. При точной настройке на радиостанцию напряжение на выводе 9 DD1 снижается, транзистор VT1 открывается и светодиод HL1 включается. Чувствительность индикатора устанавливают подборкой резистора R5. Выходной сигнал 34 через конденсатор С16 поступает на вход предварительного усилителя на транзисторе VT2, а после усиления - на регулятор громкости R13. Усилитель мощности 34 собран на микросхеме DA3 без применения теплоотвода, и его выходная мощность не должна быть более 1,5 Вт. Для получения большей мощности указанную микросхему следует установить на теплоотвод. Микросхема приёмника DA1 питается от интегрального стабилизатора напряжения DA2.

Все элементы, кроме переменных резисторов, монтируют на печатной плате из односторонне фольгированного стеклотекстолита, чертёж которой показан на рис.

Постоянные резисторы - МЛТ, С2-23, переменный резистор R7 - СПЗ-23А, СПО, СП4-1 сопротивлением 100…220 кОм, R13 - СПО, СП4-1 или СПЗ-4В с выключателем питания. Оксидные конденсаторы - К50-35 или импортные, остальные -К10-17.

Микросхему К174ХА34А можно заменить её модернизированным вариантом КР174ХА34Р или зарубежным аналогом TDA7021, а микросхему TDA2003 - отечественной микросхемой К174УН14. Аналоги интегрального стабилизатора КР142ЕН5А - 7805, VC7805CT

Транзистор КТ361Б можно заменить любым из серий КТ203, КТ209, КТ361, а КТ315Б - любым из серий КТ312, КТ315, КТ342, светодиод - красного цвета свечения с номинальным током до 20 мА. Все катушки бескаркасные, L2 намотана проводом ПЭВ-2 0,8, на оправке диаметром 6 мм и содержит 7 витков, a L1 - проводом ПЭВ-2 0,5 на оправке диаметром 5 мм и содержит 5 витков. Динамическая головка ВА1 - любая мощностью до 10 Вт и сопротивлением звуковой катушки 4…8 Ом, на пример 4ГДШ-4. Микросхема приёмника установлена в панель.Клеммники - серии 308 с шагом контактов 2,54 мм.

При пользовании двухдиапазонный УКВ ЧМ радиоприёмник в неблагоприятных условиях приёма (низина, большая удалённость от радиостанции), а также для повышения чувствительности можно применить резонансный усилитель радиочастоты. Перед налаживанием приёмника к контакту 3 колодки ХТ2 подключают антенну - отрезок провода длиной 1 …1,5 м, а к контактам 1 и 2 - динамическую головку и подают питание. Настраиваясь на радиостанции, определяют диапазон перестройки. Сравнивая его с образцовым радиоприёмником, корректируют границы этого диапазона, растягивая или сжимая витки катушки L2. Ширину диапазона можно изменить подборкой резистора R6, при уменьшении сопротивления диапазон расширяется. Подборкой резистора R5 необходимо добиться чёткого включения светодиода HL1 при точной настройке на радиостанцию и его выключения - при отстройке. Максимальную чувствительность устанавливают, предварительно настроившись на радиостанцию вблизи частоты 88 МГц. Для этого, уменьшая длину антенны, растяжением или сжатием витков катушки L1 добиваются наилучшего качества приёма. По окончании налаживания катушки фиксируют на плате парафином.