Графический процессор: что это такое и зачем используется? Центральный и графический процессор Виды графических процессоров.

Современные видеокарты, в силу требований от них огромной вычислительной мощи при работе с графикой, оснащаются своим собственным командным центром, иначе говоря - графическим процессором.

Это было сделано для того, чтобы «разгрузить» центральный процессор , который из-за своей широкой «сферы применения», просто не в состоянии справляться с требованиями, которые выдвигает современная игровая индустрия.

Графические процессоры (GPU) по сложности абсолютно не уступают центральным процессорам, но из-за своей узкой специализации, в состоянии более эффективно справляться с задачей обработки графики, построением изображения, с последующим выводом его на монитор.

Если говорить о параметрах, то они у графических процессоров весьма схожи с центральными процессорами. Это уже известные всем параметры, такие как микроархитектура процессора, тактовая частота работы ядра, техпроцесс производства. Но у них имеются и довольно специфические характеристики. Например, немаловажная характеристика графического процессора – это количество пиксельных конвейеров (Pixel Pipelines). Эта характеристика определяет количество обрабатываемых пикселей за один такт роботы GPU. Количество данных конвейеров может различаться, например, в графических чипах серии Radeon HD 6000, их количество может достигать 96.

Пиксельный конвейер занимается тем, что просчитывает каждый последующий пиксель очередного изображения, с учётом его особенностей. Для ускорения процесса просчёта используется несколько параллельно работающих конвейеров, которые просчитывают разные пиксели одного и того же изображения.

Также, количество пиксельных конвейеров влияет на немаловажный параметр – скорость заполнение видеокарты . Скорость заполнения видеокарты можно рассчитать умножив частоту ядра на количество конвейеров.

Давайте рассчитаем скорость заполнения, к примеру, для видеокарты AMD Radeon HD 6990 (рис.2) Частота ядра GPU этого чипа составляет 830 МГц, а количество пиксельных конвейеров – 96. Нехитрыми математическими вычислениями (830х96), мы приходим к выводу, что скорость заполнения будет равна 57,2 Гпиксель/c.


Рис. 2

Помимо пиксельных конвейеров, различают ещё так называемых текстурные блоки в каждом конвейере. Чем больше текстурных блоков, тем больше текстур может быть наложено за один проход конвейера, что также влияет на общую производительность всей видеосистемы. В вышеупомянутом чипе AMD Radeon HD 6990, количество блоков выборки текстур составляет 32х2.

В графических процессорах, можно выделить и другой вид конвейеров – вершинные, они отвечают за расчёт геометрических параметров трёхмерного изображения.

Сейчас, давайте рассмотрим поэтапный, несколько упрощенный, процесс конвейерного расчёта, с последующим формированием изображения:

1 - й этап. Данные о вершинах текстур поступают в вершинные конвейеры, которые занимаются рассчётом параметров геометрии. На этом этапе подключается блок «T&L» (Transform & Lightning). Этот блок отвечает за освещение и трансформацию изображения в трёхмерных сценах. Обработка данных в вершинном конвейере проходит за счёт программы вершинного шейдера (Vertex Shader).

2 - ой этап. На втором этапе формирования изображения подключается специальный Z-буфер, для отсечения невидимых полигонов и граней трёхмерных объектов. Далее происходит процесс фильтрации текстур, для этого в «бой» вступают пиксельные шейдеры. В программных интерфейсах OpenGL или Direct3D описаны стандарты для работы с трёхмерными изображениями . Приложение вызывает определённую стандартную функцию OpenGL или Direct3D, а шейдеры эту функцию выполняют.

3–ий этап. В завершающем этапе построения изображения в конвейерной обработке, данные передаются в специальный буфер кадров.

Итак, только что мы вкратце рассмотрели структуру и принципы функционирования графических процессоров, информация,конечно, «не из лёгких» для восприятия, но для общего компьютерного развития, я думаю, будет весьма полезна:)

Здравствуйте, уважаемые пользователи и любители компьютерного железа. Сегодня порассуждаем на тему, что такое интегрированная графика в процессоре, зачем она вообще нужна и является ли такое решение альтернативой дискретным, то бишь внешним видеокартам.

Если рассуждать с точки зрения инженерного замысла, то встроенное графическое ядро, повсеместно используемое в своих продуктах компаниями Intel и AMD, не является видеокартой как таковой. Это видеочип, который интегрировали в архитектуру ЦП для исполнения базовых обязанностей дискретного ускорителя. Но давайте разбираться со всем более подробно.

Из этой статьи вы узнаете:

История появления

Впервые компании начали внедрять графику в собственные чипы в середине 2000‑х. Интел начали разработку еще с Intel GMA, однако данная технология довольно слабо себя показывала, а потому для видеоигр была непригодной. В результате на свет появляется знаменитая технология HD Graphics (на данный момент самый свежий представитель линейки – HD graphics 630 в восьмом поколении чипов Coffee Lake). Дебютировало видеоядро на архитектуре Westmere, в составе мобильных чипов Arrandale и десктопных – Clarkdale (2010 год).

AMD пошла иным путем. Сначала компания выкупила ATI Electronics, некогда крутого производителя видеокарт. Затем начала корпеть над собственной технологией AMD Fusion, создавая собственные APU – центральный процессор со встроенным видеоядром (Accelerated Processing Unit). Дебютировали чипы первого поколения в составе архитектуры Liano, а затем и Trinity. Ну а графика Radeon r7 series на долгое время прописалась в составе ноутбуков и нетбуков среднего класса.

Преимущества встроенных решений в играх

Итак. Для чего же нужна интегрированная карта и в чем заключаются ее отличия от дискретной.

Постараемся сделать сравнение с пояснением каждой позиции, сделав все максимально аргументировано. Начнем, пожалуй, с такой характеристики как производительность. Рассматривать и сравнивать будем наиболее актуальные на данный момент решения от Intel (HD 630 c частотой графического ускорителя от 350 до 1200 МГц) и AMD (Vega 11 с частотой 300‑1300 Мгц), а также преимущества, которые дают эти решения.
Начнем со стоимости системы. Встроенная графика позволяет неплохо сэкономить на покупке дискретного решения, вплоть до 150$, что критически важно при создании максимально экономного ПК для офисного и использования.

Частота графического ускорителя AMD заметно выше, да и производительность адаптера от красных существенно выше, что говорит о следующих показателях в тех же играх:

Игра Настройки Intel AMD
PUBG FullHD, низкие 8–14 fps 26–36 fps
GTA V FullHD, средние 15–22 fps 55–66 fps
Wolfenstein II HD, низкие 9–14 fps 85–99 fps
Fortnite FullHD, средние 9–13 fps 36–45 fps
Rocket League FullHD, высокие 15–27 fps 35–53 fps
CS:GO FullHD, максимальные 32–63 fps 105–164 fps
Overwatch FullHD, средние 15–22 fps 50–60 fps

Как видите, Vega 11 – лучший выбор для недорогих «игровых» систем, поскольку показатели адаптера в некоторых случаях доходят до уровня полноценной GeForce GT 1050. Да и в большинстве сетевых баталий она показывает себя прекрасно.

На данный момент с этой графикой поставляется только процессор AMD Ryzen 2400G, но он определенно стоит внимания.

Вариант для офисных задач и домашнего использования

Какие требования чаще всего вы выдвигаете к своему ПК? Если исключить игры, то получится следующий набор параметров:

  • просмотр фильмов в HD-качестве и роликов на Youtube (FullHD и в редких случаях 4К);
  • работа с браузером;
  • прослушивание музыки;
  • общение с друзьями или коллегами с помощью мессенджеров;
  • разработка приложений;
  • офисные задачи (Microsoft Office и похожие программы).

Все эти пункты прекрасно работают со встроенным графическим ядром на разрешениях вплоть до FullHD.
Единственный нюанс, который необходимо учитывать в обязательном порядке – поддержка видеовыходов той материнской платой, на которую вы собираетесь ставить процессор. Заранее уточните этот момент, чтобы не возникло проблем в дальнейшем.

Недостатки встроенной графики

Поскольку разобрались с плюсами, нужно проработать и недостатки решения.

  • Главный минус подобной затеи – производительность. Да, вы можете с чистой совестью играть в более-менее современные игрушки на низких и высоких настройках, однако любителям графики, такая затея точно не придется по вкусу. Ну а если вы работаете с графикой профессионально (обработка, рендеринг, монтаж видеороликов, постпродакшн), да еще и на 2–3 мониторах, то интегрированный тип видео вам точно не подойдет.

  • Момент номер 2: отсутствие собственной скоростной памяти (в современных картах это GDDR5, GDDR5X и HBM). Формально видеочип может использовать хоть до 64 ГБ памяти, однако вся она будет браться откуда? Правильно, из оперативной. А значит необходимо заранее построить систему таким образом, чтобы ОЗУ хватило и для работы, и для графических задач. Учитывайте, что скорость современных DDR4-модулей значительно ниже, нежели GDDR5, а потому времени на обработку данных будет тратиться больше.
  • Следующий недостаток – тепловыделение. Помимо собственных ядер на процессе появляется еще одно, которое, в теории, прогревается ничуть не меньше. Охлаждать все это великолепие боксовой (комплектной) вертушкой можно, но готовьтесь к периодическим занижениям частот в особо сложных расчетах. Покупка более мощного кулера решает проблему.
  • Ну и последний нюанс – невозможность апгрейда видео без замены процессора. Иными словами, чтобы улучшить встроенное видеоядро, вам придется в буквальном смысле покупать новый процессор. Сомнительная выгода, не так ли? В таком случае проще через некоторое время приобрести дискретный ускоритель. Производители вроде AMD и nVidia предлагают отличные решения на любой вкус.

Итоги

Встроенная графика – отличный вариант в 3 случаях:

  • вам необходима временная видеокарта, поскольку денег на внешнюю не хватило;
  • система изначально задумывалась как сверхбюджетная;
  • вы создаете домашнюю мультимедийную станцию (HTPC), в которой основной акцент делается именно на встроенное ядро.

Надеемся одной проблемой в вашей голове стало меньше, и теперь вы знаете, для чего производители создают свои APU.

В следующих статьях поговорим о таких терминах как виртуализация и не только. Следите за , чтобы быть в курсе всех актуальных тем, связанных с железом.

Получил возможность отслеживать данные производительности графического процессора (GPU). Пользователи могут анализировать данную информацию, чтобы понять, как используются ресурсы видеокарты, которые все чаще применяются в вычислениях.

Это означает, что все установленные в ПК графические процессоры будут показываться на вкладке “Производительность”. Кроме того, на вкладке “Процессы” вы можете посмотреть, какие процессы получают доступ к графическому процессору, а данные использования памяти GPU размещаются на вкладке “Подробности”.

Как проверить поддерживается ли функция просмотра производительности графического процессора

Хотя Диспетчер задач не предъявляет особые требования для мониторинга процессора, памяти, диска или сетевых адаптеров, ситуация с графическими процессора выглядит немного иначе.

В Windows 10 информация о графическом процессоре доступна в Диспетчере задач только при использовании архитектуры Windows Display Driver Model (WDDM). WDDM - это архитектура графических драйверов для видеокарты, которая позволяет выполнять рендеринг рабочего стола и приложений на экране.

WDDM предусматривает наличие графического ядра, которое включает планировщик (VidSch) и менеджер видеопамяти (VidMm). Именно эти модули отвечают за принятие решений при использовании ресурсов графического процессора.

Диспетчер задач получает информацию об использовании ресурсов GPU напрямую от планировщика и менеджера видеопамяти графического ядра. Причем, это справедливо как в случае с интегрированными, так и в случае с выделенными графическими процессорами. Для корректной работы функции требуется WDDM версии 2.0 или выше.

Чтобы проверить, поддерживают ли ваше устройства просмотр данных GPU в Диспетчере задач, выполните следующие действия:

  1. Используйте сочетание клавиш Windows + R , чтобы открыть команду “Выполнить”.
  2. Введите команду dxdiag.exe , чтобы открыть "Средство диагностики DirectX" и нажмите клавишу Ввод (Enter).
  3. Перейдите на вкладку “Экран”.
  4. В правой секции “Драйверы” посмотрите значение модели драйвера.

Если используется модель WDDM 2.0 или выше, то Диспетчер задач будет выводить данные об использовании графических процессоров на вкладке “Производительность”.

Как отслеживать производительность графического процессора с помощью Диспетчера задач

Чтобы отслеживать данные производительности графического процессора с помощью Диспетчера задач, просто щелкните правой кнопкой мыши на панели задач и выберите пункт “Диспетчер задач”. Если активен компактный режим просмотра, нажмите кнопку “Подробнее”, а затем перейдите на вкладку “Производительность”.

Совет : для быстрого запуска Диспетчера задач можно использовать сочетание клавиш Ctrl + Shift + Esc

Вкладка Производительность

Если ваш компьютер поддерживает WDDM версии 2.0 или более поздней версии, то на левой панели вкладки Производительность будет отображаться ваш графический процессор. В случае, если в системе установлено несколько графических процессоров, каждый из них будет показываться с использованием номера, соответствующего его физическому местоположению, например, Графический процессор 0, Графический процессор 1, Графический процессор 2 и т. д.

Windows 10 поддерживает связки нескольких графических процессоров с использованием режимов Nvidia SLI и AMD Crossfire. Когда одна из этих конфигураций обнаружена в системе, вкладка “Производительность” будет указывать каждую связь с использованием номера (например, Связь 0, Связь 1 и т. д.). Пользователь сможет видеть и проверять каждый графический процессор в пределах связки.

На странице определенного графического процессора вы найдете обобщенные данные о производительности, которые в общем случае разделены на два раздела.

Раздел содержит текущую информацию о движках самого GPU, а не о отдельных его ядрах.

Диспетчер задач по умолчанию отображает четыре наиболее востребованных движка GPU, которые по умолчанию включают 3D, копирование, декодирование видео и обработку видео, но вы можете изменить эти представления, щелкнув название и выбрав другой движок.

Пользователь может даже изменить вид графика на один движок, щелкнув правой кнопкой мыши в любом месте раздела и выбрав опцию "Изменить график > Одно ядро".

Ниже графиков движков расположился блок данных о потреблении видеопамяти.

Диспетчер задач показывает два типа видеопамяти: общую и выделенную.

Выделенная память - это память, которая будет использоваться только графической картой. Обычно это объем VRAM на дискретных картах или объем памяти, доступный для процессора, на котором компьютер настроен на явное резервирование.

В правом нижнем углу отображается параметр “Зарезервированная аппаратно память” - этот объем памяти зарезервирован для видеодрайвера.

Объем выделенной памяти в этом разделе представляет объем памяти, активно используемый в процессах, а объем общей памяти в этом разделе представляет собой объем системной памяти, потребляемой для графических нужд.

Кроме того, в левой панели под названием графического процессоры вы увидите текущее показатель использование ресурсов GPU в процентах. Важно отметить, что диспетчер задач использует процент наиболее загруженного движка для представления общего использования.

Чтобы увидеть данные о производительности в динамике, запустите приложение, которое интенсивно использует графический процессор, например, видеоигру.

Вкладка Процессы

Вы также можете отслеживать производительность графического процессора на вкладке Процессы . В этом разделе вы найдете обобщенную сводку для определенного процесса.

Столбец “Графический процессор” показывает использование наиболее активного движка для представления общего использования ресурсов GPU конкретным процессом.

Однако, если несколько двигателей сообщают о 100-процентном использовании может возникнуть путаница. Дополнительный столбец “Ядро графического процессора” сообщает детальную информацию о загруженном данным процессом двигателе.

В заголовке столбца на вкладке “Процессы” показывается общее потребление ресурсов всех доступных в системе графических процессоров.

Если вы не видите эти столбцы, щелкните правой кнопкой мыши по заголовку любого столбца и отметьте соответствующие пункты.

Вкладка Подробности

По умолчанию вкладка не отображает информацию о графическом процессоре, но вы всегда можете щелкнуть правой кнопкой мыши по заголовку столбца, выбрать опцию “Выбрать столбцы” и включить следующие параметры:

  • Ядро графического процессора
  • Выделенная память графического процессора
  • Общая память графического процессора

Вкладки памяти отображают общий и выделенный объемы памяти соответственно, которые используются конкретным процессом. Столбцы “Графический процессор” и “Ядро графического процессора” показывают такую же информацию, как на вкладке “Процессы”.

При использовании вкладки “Подробности” вам нужно знать, что добавление используемой памяти каждым процессом может оказаться больше, чем общая доступная память, так как общая память будет подсчитываться несколько раз. Эта информация полезна для понимания использования памяти в процессе, но вы должны использовать вкладку “Производительность”, чтобы увидеть более точную информацию об использовании графической подсистемы.

Вывод

Microsoft стремится предоставить пользователям, более точный инструмент оценки производительности графической подсистемы по сравнению со сторонними приложениями. Заметим, что работа над данной функциональностью продолжается и в ближайшее время возможны улучшения.

Все мы знаем, что у видеокарты и процессора несколько различные задачи, однако знаете ли вы, чем они отличаются друг от друга во внутренней структуре? Как CPU (англ. - central processing unit ), так и GPU (англ. - graphics processing unit ) являются процессорами, и между ними есть много общего, однако сконструированы они были для выполнения различных задач. Подробнее об этом вы узнаете из данной статьи.

CPU

Основная задача CPU, если говорить простыми словами, это выполнение цепочки инструкций за максимально короткое время. CPU спроектирован таким образом, чтобы выполнять несколько таких цепочек одновременно или разбивать один поток инструкций на несколько и, после выполнения их по отдельности, сливать их снова в одну, в правильном порядке. Каждая инструкция в потоке зависит от следующих за ней, и именно поэтому в CPU так мало исполнительных блоков, а весь упор делается на скорость выполнения и уменьшение простоев, что достигается при помощи кэш-памяти и конвейера .

GPU

Основная функция GPU - рендеринг 3D графики и визуальных эффектов, следовательно, в нем все немного проще: ему необходимо получить на входе полигоны, а после проведения над ними необходимых математических и логических операций, на выходе выдать координаты пикселей. По сути, работа GPU сводится к оперированию над огромным количеством независимых между собой задач, следовательно, он содержит большой объем памяти, но не такой быстрой, как в CPU, и огромное количество исполнительных блоков: в современных GPU их 2048 и более, в то время как у CPU их количество может достигать 48, но чаще всего их количество лежит в диапазоне 2-8.

Основные отличия

CPU отличается от GPU в первую очередь способами доступа к памяти. В GPU он связанный и легко предсказуемый - если из памяти читается тексел текстуры, то через некоторое время настанет очередь и соседних текселов. С записью похожая ситуация - пиксель записывается во фреймбуфер, и через несколько тактов будет записываться расположенный рядом с ним. Также графическому процессору, в отличие от универсальных процессоров, просто не нужна кэш-память большого размера, а для текстур требуются лишь 128–256 килобайт. Кроме того, на видеокартах применяется более быстрая память, и в результате GPU доступна в разы большая пропускная способность, что также весьма важно для параллельных расчетов, оперирующих с огромными потоками данных.

Есть множество различий и в поддержке многопоточности: CPU исполняет 12 потока вычислений на одно процессорное ядро, а GPU может поддерживать несколько тысяч потоков на каждый мультипроцессор, которых в чипе несколько штук! И если переключение с одного потока на другой для CPU стоит сотни тактов, то GPU переключает несколько потоков за один такт.

В CPU большая часть площади чипа занята под буферы команд, аппаратное предсказание ветвления и огромные объемы кэш-памяти, а в GPU большая часть площади занята исполнительными блоками. Вышеописанное устройство схематично изображено ниже:

Разница в скорости вычислений

Если CPU - это своего рода «начальник», принимающий решения в соответствии с указаниями программы, то GPU - это «рабочий», который производит огромное количество однотипных вычислений. Выходит, что если подавать на GPU независимые простейшие математические задачи, то он справится значительно быстрее, чем центральный процессор. Данным отличием успешно пользуются майнеры биткоинов.

Майнинг Bitcoin

Суть майнинга заключается в том, что компьютеры, находящиеся в разных точках Земли, решают математические задачи, в результате которых создаются биткоины . Все биткоин-переводы по цепочке передаются майнерам, чья работа состоит в том, чтобы подобрать из миллионов комбинаций один-единственный хэш, подходящий ко всем новым транзакциям и секретному ключу, который и обеспечит майнеру получение награды в 25 биткоинов за раз. Так как скорость вычисления напрямую зависит от количества исполнительных блоков, получается, что GPU значительно лучше подходят для выполнения данного типа задачи, нежели CPU. Чем больше количество произведенных вычислений, тем выше шанс получить биткоины. Дело даже дошло до сооружения целых ферм из видеокарт.

Не многие пользователи знают, что видеокарты могут выполнять намного больше, чем просто отображать картинку на мониторе. Используя CUDA, Stream и остальные подобные технологии, можно существенно поднять производительность компьютера, взвалив на себя не свои вычисления. Ниже будет описан принцип работы.

Чтобы вывести на экран непрерывные кадры в какой-нибудь современной игры, компьютеру требуется хорошая производительность. Стоит предположить, что современные видеокарты по производительности соответствуют свежим версиям процессоров.

Стоит отметить, что когда видеоадаптер простаивает и не выполняет обработку изображения, ее возможности остаются невостребованными. Чтобы не было такого простоя и можно было взвалить на нее некоторые обязанности, что снизит нагрузку на процессор, необходимо применять специальные опции ускорения компьютера. Ниже будет подробная инструкция о принципах работы этой технологии, которая может увеличить производительность ПК.

Каким образом видеоплата увеличивает скорость работы компьютера?

Воспользоваться возможностями видеокарт могут только специальные приложения. Данные программы могут совмещаться с видеокартой и используют одну из 4-х технологий физического ускорения.

CUDA. Данную разработку создала корпорация Nvidia. Эта технология может применяться для проведения сложных вычислительных манипуляций и для редактирования видео и картинок.

Stream. Эта технология механического ускорения аналогична первой, но разработана изготовителем видеоадаптеров AMD.
Обе эти технологии поддерживаются всеми операционками, кроме Mac OS, и используют только с видеокартами подходящего изготовителя. Создатели ПО вынуждены проводить дополнительную работу, чтобы видеокарты обоих разработчиков смогли увеличивать скорость работы их приложений. Ниже представлены технологии, которые способны работать с платами обоих изготовителей.

OpenCL. Эта технология была выпущена корпорация Apple в 2008 году и поддерживается всеми операционками и любым ПО. Однако, на сегодняшний день нет приложений для ускорения компьютера с использованием этой технологии. Кроме того, по увеличению продуктивности OpenCL существенно позади от первых двух технологий.

DirectCompute. Эта технология была встроена компанией Microsoft в DirectX 11. Но она способна работать только на операционках Windows 7 и Vista, и то с небольшим пакетом приложений.

Какое увеличение производительности предоставляет видеокарта?

Прирост непосредственно зависит от графического адаптера и производительности остальных элементов компьютера. Увеличение производительности устанавливается утилитами и проводимыми операциями. На современном среднем ПК увеличение скорости преобразования высококачественного видео может достигать до 20-ти раз. А вот редактирование фильтрами и спецэффектами фотоснимком может ускориться в триста раз.

Что влияет на высокую продуктивность CUDA и подобных технологий?

CPU на материнке при выполнении сложных задач изначально разделяет процесс на несколько поменьше, а после выполняет их последовательную обработку. Полученный промежуточный результат размещается в маленькой, но быстрой памяти процессора. Когда отделы памяти переполняются, файлы перемещаются в кэш-память, которая также расположена в процессоре. Но на обмен информацией между процессором и оперативкой требуется довольно много времени, поэтому скорость получается не совсем высокой.

Видеокарты иногда могут проводить такие манипуляции значительно быстрее. На это может влиять несколько обстоятельств. Одно из них параллельные вычисления. При необходимости провести несколько подобных манипуляций, некоторые из них могут проводиться графическим модулем совместно с процессором.

К примеру, при работе с видео или картинками утилите необходимо изменять огромное количество пикселей, и при этом используя повторяющиеся способы. Специально для этого графический адаптер обладает сотнями мелких процессоров, которые носят названия потоковые.

Кроме того, необходим быстрый доступ к памяти. По аналогии с центральными процессами, графические адаптеры также располагают своей промежуточной памятью и оперативкой. Но в этом случае они обладают множеством регистров скоростной памяти, что существенно увеличивает скорость вычислений.

Какое число потоковых CPU обладают видеокарты?

На это влияет модель процессора. К примеру, GeForse GTX 590 располагает двумя модулями Fermi, каждый из которых обладает 512 потоковыми CPU. Одна из мощнейших видеоплат от AMD — Radeon HD 6990 – также оснащена парой модулей, в каждом из которых по 1536 процессоров. Но при всем этом, HD 6990 существенно проигрывает GTX 590 по скорости.

Как запустить CUDA или Stream?

Ничего запускать не следует, так как технологии представляют собой элемент аппаратной части видеокарт. После того, как драйвер графического адаптера установить приложение, которое поддерживает какую-то технологию, тогда автоматически произойдет увеличение скорости работы компьютера. Чтобы получить полную производительность, необходимо инсталлировать свежую версию драйвера.
Стоит отметить, что пользователям видеокарт AMD требуется скачать и инсталлировать набор AMD Media Codec Package.

Почему не все утилиты работают с этими технологиями?

До того момента, пока OpenCL не будет широко распространен, создателям программного обеспечения надо подстраивать каждое приложение для возможности работать с видеоплатами Nvidia и AMD. Но при этом не каждый производитель пойдет на дополнительные расходы.

Кроме того, не все приложения имеют возможность обеспечивать постоянный поток несложных операций вычислений, которые могут происходить параллельно. Это может отлично сработать совместно с программами по редактированию видео и графики. Для почтовиков или текстовых редакторов эти технологии не сильно помогут.

Супер ПК

К примеру, китайский ПК Tianhe-1А располагает 7168 графическими модулями Nvidia, которые поддерживают отличную производительность. При этом проходит 2,5 трлн вычислений в секунду. Этот компьютер расходует 4 мегаватта энергии. Столько электричества расходует городок с пятью тысячами человек населения.

Способен ли графический адаптер заменить центральный?

Такую замену провести невозможно. Устройство этих процессоров полностью разное. CPU представляет собой универсальный вычислительный блок, который имеет возможность обрабатывать и пересылать информацию другим элементам ПК. В свою очередь, видеокарты являются узконаправленными устройствами, несмотря на то, что выполняют маленькое количество операций, но при этом с высокой скоростью.

Что будет в будущем: универсальные чипы

Чтобы увеличить производительность CPU, корпорации Intel и AMD постоянно добавляют ядра в свои процессоры. Кроме того, они постоянно добавляют новые технологии, которые способны увеличить эффективность вычислительных операций и возможность параллельной обработки информации.

По сравнению с центральными процессорами, видеокарты уже располагают большим количеством простых ядер, которые способны очень быстро выполнить комплексные вычисления.

Но получается так, что начальные отличия в принципах работы видеокарты и CPU понемногу стираются. Поэтому разработка универсального чипа очень логична. На сегодняшний день пользователи компьютера могут использовать весь потенциал видеокарты без дорогих графических чипов.

Современные процессоры от ведущих разработчиков, на данный момент могут продемонстрировать возможность соединить графический адаптер и CPU и работать, как один универсальный вычислительный блок.

В любом из чипов ядра CPU и видеокарты размещаются на единственном кристалле. Это предоставляет возможность быстрее разделить вычислительные манипуляции между ядрами. Эти применяемые технологии носят имя Intel Quick Sync и AMD Арр. В данное время уже имеются отдельные приложения, которые применяют подобную технологию.

В общем, это все, что необходимо знать о различиях центрального процессора и видеокарты. Как видно из написанного, графический процессор способен выполнять некоторые операции центрального, особенно это касается современных компьютеров с мощными видеокартами.